Issue |
E3S Web Conf.
Volume 318, 2021
Second International Conference on Geotechnical Engineering – Iraq (ICGE 2021)
|
|
---|---|---|
Article Number | 03009 | |
Number of page(s) | 7 | |
Section | Developments in Structural Engineering and Construction Materials | |
DOI | https://doi.org/10.1051/e3sconf/202131803009 | |
Published online | 08 November 2021 |
Experimental Investigation on the Structural Behavior of Double Channel Castellated Steel Beams
Civil Engineering Department, University of Baghdad, Baghdad, Iraq
a ahmadirq2222@gmail.com
b mushriqf@coeng.uobaghdad.edu.iq
The main idea of castellated steel beams is to reduce their weight by creating void space (web holes) in the main beam body. This structure tends to exhibit superior properties such as advanced strength, lightweight, and cost-saving compared to the amount of steel used compared with reference beam without web holes. This study is devoted to investigating the structural behavior of double-channel cast steel beams. In this project, two pieces of a rolled hot steel channel were connected to form a new section used in the testing program. Five beams of different sections were manufactured and tested using the same length and all testing parameters conditions with only a difference in the number of openings and distance (e) between each hole to study the behavior of section to different bearing loads and deformation. Two loading points were placed on a third of the length of the castellated steel beam. This study showed that when the web holes are few, the total bearing strength decreases. As the number of web holes increased to a specific limit, the bearing strength continued to rise, and if openings exceeded a specific limit, the bearing force decreased. The rate of increase to the bearing force was found between 17.7-40.0%. Lastly, as per beam deformation, the deformation value decreased as the number of openings increased, which was taken at the maximum load of the reference beam.
Key words: Castellated beams / double-channel / steel / bending / flexure
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.