Issue |
E3S Web Conf.
Volume 326, 2021
International Conference on Innovations, Physical Studies and Digitalization in Mining Engineering 2021
|
|
---|---|---|
Article Number | 00009 | |
Number of page(s) | 5 | |
DOI | https://doi.org/10.1051/e3sconf/202132600009 | |
Published online | 24 November 2021 |
Numerical analysis of inter-panel pillars in the bump prone conditionals of the Alardinskaya mine
Saint Petersburg Mining University, 2, 21 st Line, Vasilievski Island, Saint-Petersburg, 199106, Russia
* Corresponding author: Sidorenkoaa@mail.ru
The purpose of the paper is to substantiate the width of the barrier and yield pillars for the application of a new seam development scheme in the conditions of the Alardinskaya mine (Russia). The Alardinskaya mine develops gas-bearing coal seams that are prone to spontaneous combustion and are hazardous due to rock bumps, which leads to frequent accidents. The analysis of the world experience of mining seams being hazardous to rock bumps showed that safe mining with longwalls can be provided by a system of inter-panel pillars: very wide barrier pillar and two yield pillars. Numerical modeling using the finite element method was carried out to assess the possibility of reducing the barrier pillar width in order to decrease the volume of coal losses in the subsoil. The model of rock massif was created in Ansys mechanical software. Numerical modeling of the longwall panel development with longwalls was carried out at various widths of broad and yield pillars. The analysis outcomes of the vertical stresses diagrams in the seams are presented for different parts of the longwall panel. The rational parameters of the pillar system, ensuring the minimization of the reference pressure influence from the previously worked-out column and the reference pressure of the operating longwall, are determined as a result of numerical analysis. The conclusion is made about the expediency of the technological scheme application proposed by the authors in the conditions of the Alardinskaya mine to reduce the endogenous fire hazard and the danger of rock bumps.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.