Issue |
E3S Web Conf.
Volume 326, 2021
International Conference on Innovations, Physical Studies and Digitalization in Mining Engineering 2021
|
|
---|---|---|
Article Number | 00039 | |
Number of page(s) | 5 | |
DOI | https://doi.org/10.1051/e3sconf/202132600039 | |
Published online | 24 November 2021 |
Influence of immersion depth of the sheet pile on the intensity of suffusion processes in pressure hydraulic structures
1
Siberian State University of Water Transport, 33, Schetinkina st., 630099, Novosibirsk, Russia
2
Admiral Ushakov Maritime State University, 93 Lenin’s avenue, Novorossisk, 353924, Russia
* Corresponding author: yibik@mail.ru
The research examines the influence of constructive features of a pressure hydraulic structure on the intensity of suffusion processes in the tailwater. The equations of non-vortex filtration fluid motion under a hydraulic structure in the form of a sheet pile wall are calculated by the finite element method using the Neumann and Dirichlet boundary conditions. The influence of immersion depth of the sheet pile on the erosion processes in the tailwater is investigated. The possibility of protecting the pressure head structure by creating an apron in the tailwater which prevents soil suffusion is analyzed. Calculations show that the greatest pressure gradients are observed at the sheet pile tip and at the outlet to the tailwater. From the point of view of the suffusion process, the zone at the lower end of the sheet pile is not dangerous; therefore, predictions about the suffusion intensity for a particular structure should be made on the basis of the output gradients at the tailwater border. Calculations show that the constructive features of a pressure hydraulic structure have a significant impact on the processes of suffusion and pile heave. The graphs are based on the calculation results; they clearly demonstrate that the filtration rate in the structure tailwater sharply decreases with an increase in the depth of driving the sheet pile, regardless of the soil type of the structure base. Besides, an additional protective effect is provided by a structure in the apron tailwater.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.