Issue |
E3S Web Conf.
Volume 376, 2023
International Scientific and Practical Conference “Environmental Risks and Safety in Mechanical Engineering” (ERSME-2023)
|
|
---|---|---|
Article Number | 01082 | |
Number of page(s) | 8 | |
Section | I Environmental Risks and Safety in Mechanical Engineering | |
DOI | https://doi.org/10.1051/e3sconf/202337601082 | |
Published online | 31 March 2023 |
Predictive modeling of wave hydrodynamics and relief formation in the presence of multi-scale turbulent exchange
1 Taganrog Institute of A.P. Chekhov (branch) RGEU (RINE), Initiative St., 46, Taganrog, Russian Federation
2 Don State Technical University, Gagarin square 1, 344000, Rostov-on-Don, Russia
* Corresponding author: rab55555@rambler.ru
Introduction. Reliable prediction of indicators of turbulent flows is a very difficult task, which is explained by the exceptional physical complexity of turbulence, in particular its probabilistic nature, a wide space-time spectrum and a fundamentally three-dimensional non-stationary nature. Despite conducting a wide range of studies focused on the problem under consideration, they did not fully reflect the totality of various factors and processes affecting the structure and parameters of vertical turbulent mixing. Materials and methods. The article is devoted to the study of spatial- three-dimensional wave processes in shallow water bodies, taking into account the features of turbulent exchange depending on the source and localization in the column of liquid, as well as the study of the influence of regular wave processes on turbulent exchange and vertically using a mathematical model of wave processes based on the system of Navier-Stokes equations, including three equations of motion in the with dynamically changing geometry of the computational domain. Results. Based on the developed software package, a scenario of changes in hydrodynamic wave processes of the coastal zone is constructed. Discussions and conclusions. The separation of the wave flow into a near-surface macroturbulent layer caused by wave motion and a lower layer with background hydrodynamic turbulence is proved, the strength and intensity of turbulence changed synchronously with wave oscillations, demonstrating a pronounced asymmetry of turbulence generation throughout the water column.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.