Issue |
E3S Web of Conf.
Volume 382, 2023
8th International Conference on Unsaturated Soils (UNSAT 2023)
|
|
---|---|---|
Article Number | 21002 | |
Number of page(s) | 6 | |
Section | Geoenvironmental and Geo Energy Applications of Unsaturated Soil Mechanism - Part I | |
DOI | https://doi.org/10.1051/e3sconf/202338221002 | |
Published online | 24 April 2023 |
Composite Barrier Systems for Climate Adaptation
Newcastle University, Newcastle upon Tyne, United Kingdom
* Corresponding author: jessica.holmes@newcastle.ac.uk
Composite barrier systems, which are two-layer systems of materials (fine-grained material overlying coarse-grained material) of contrasting hydraulic properties, can be used to mitigate the effects of climate change in urban areas, including flooding and shrink swell deformation. Here, a series of experiments were carried out to test a range of materials, including 20-30 mm gravel, recycled crushed concrete, topsoil, and topsoil amended with water treatment residual (WTR). The consideration of waste products here aims to improve the sustainability of composite barrier systems for climate adaptation. The results indicate that WTR-amended topsoil is suitable for use as a fine-grained material in composite barrier systems owing to its enhanced water retention properties. However, while crushed concrete can be used in the coarse-grained layer to form a capillary barrier when the system is dry, once breakthrough has occurred, transmission of water through the barrier is quicker than in composite barriers with 20-30 mm gravel. As such, 20-30 mm gravel is recommended for use in the coarse-grained layer. Two large-scale, outdoor lysimeters were set-up using the recommendations derived from the column experiments. The lysimeter experiments were subjected to a series of simulated rainfall events to enable initial interpretations of composite barrier performance.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.