Issue |
E3S Web Conf.
Volume 383, 2023
International Scientific Conference Transport Technologies in the 21st Century (TT21C-2023) “Actual Problems of Decarbonization of Transport and Power Engineering: Ways of Their Innovative Solution”
|
|
---|---|---|
Article Number | 04092 | |
Number of page(s) | 9 | |
Section | Mechanical Engineering and New Energy Technologies | |
DOI | https://doi.org/10.1051/e3sconf/202338304092 | |
Published online | 24 April 2023 |
Experimental research of dynamic vibration damping for rigid busbar structures
1
Donbas National Academy of Civil Engineering and Architecture, 14, Heroev Nebesnoi Sotni str., Makeyevka, DPR, Russia
2
Moscow State University of Civil Engineering, 26, Yaroslavskoe sh., Moscow, Russia
* Corresponding author: garigo@mail.ru
Introduction: in the case when flexible structures interact with the wind flow, various phenomena of aerodynamic instability may arise. Typical representatives of such phenomena are vortex wind excitation of cylindrical structures, galloping of poorly streamlined structures with a square, rectangular or rhomboid cross-section, etc. The article highlights some basic ways of damping vibrations of rigid busbar structures. Materials and methods: the method of dynamic vibration damping consists in attaching additional devices to the vibration protection object to change its vibration state. The work of dynamic dampers is based on the formation of force effects transmitted to the object. It differs from another method of vibration reduction, characterized by the imposition of additional kinematic connections on the object such as fixing its particular points. Results: a mathematical model of the plate dynamic damper operation with a point load is presented. To determine the optimal parameters of dynamic vibration dampers, their calculation was performed, taking into account the joint action of the rigid busbar and the damper. Experimental research of the conjoint work of a rigid busbar with a plate dynamic damper is carried out. Conclusions: the effective application of plate dynamic dampers with a point load has been confirmed both outside and inside the tube busbar. Is proposed the special plate vibration damper. This allows to increase the logarithmic decrement of oscillations by 3-3.5 times and reduce the amplitude of oscillations of rigid busbar structures in the resonant mode by 12 time.
Key words: rigid busbar / outdoor switchgear / vortex wind excitation / plate dynamic damper / point load
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.