Issue |
E3S Web of Conf.
Volume 389, 2023
Ural Environmental Science Forum “Sustainable Development of Industrial Region” (UESF-2023)
|
|
---|---|---|
Article Number | 01062 | |
Number of page(s) | 8 | |
Section | Materials Science Innovations, Green Chemistry and Emission Reduction | |
DOI | https://doi.org/10.1051/e3sconf/202338901062 | |
Published online | 31 May 2023 |
Phosphorus-containing flame retardants for fire-safe foamed polymers
National Research Moscow State University of Civil Engineering, 129337 Moscow, Russia
* Corresponding author: smirnov@nocnt.ru
The increased fire hazard of foamed polymers hinders their widespread use in the construction industry. An effective method of reducing the combustibility of carbonizing polymers is the use of phosphorus-containing flame retardants. Therefore, investigation of the influence of phosphorus-containing flame retardants to the composition of pyrolysis products and operational properties – heat resistance, flammability, combustibility and smoke generating ability – is the important objective. In the article we have presented the results of related experimental studies. The effects of phosphorus-containing flame retardants on heat resistance and main operational properties related to fire-safety of foamed constructional polymers are examined. A correlation was found between the results of evaluating the combustibility of foams by the limiting oxygen index and the combustibility index. Optimal concentrations of phosphorus in the foamed thermosetting polymers are established. It was shown that optimal concentration of the flame retardants leads to low combustibility of polyurethane-, resole- and urea-based foamed polymers.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.