Issue |
E3S Web Conf.
Volume 391, 2023
4th International Conference on Design and Manufacturing Aspects for Sustainable Energy (ICMED-ICMPC 2023)
|
|
---|---|---|
Article Number | 01093 | |
Number of page(s) | 17 | |
DOI | https://doi.org/10.1051/e3sconf/202339101093 | |
Published online | 05 June 2023 |
An efficient novel paradigm for object detection through web camera using deep learning (YOLOv5’s object detection model)
Department of IT, Gokaraju Rangaraju Institute of Engineering and Technology, India
* corresponding author: chida.koudike@gmail.com
Object detection, a fundamental duty in computer vision that has a wide range of practical applications, they are surveillance, robotics, and autonomous driving. Recent developments of deep learning have got gradual improvemenrts in detection accuracy and speed. One of the most popular and effective deep learning models for object detection is YOLOv5. In this discussion, we an object detection model through YOLOv5 and its implementation for object detection tasks. We discuss the model’s architecture, training process, and evaluation metrics. Furthermore, we present experimental results on popular object detection benchmarks to demonstrate the efficacy and efficiency of YOLOv5 in detecting various objects in complex scenes. Our experiments states that YOLOv5 out performs other state of the art object detection models case of accuracy of detected image and speed of detection, making it a promising approach for real-world applications. Our work contributes to the growing body of research on deep learning-based object detection and provides valuable insights into the capabilities and limitations of YOLOv5. By improving accuracy, speed of object detection models, we have enabled a wide range of applications that can benefit society in countless ways.
Key words: Object detection / YOLOv5 / State of the art / Deep learning / Detection accuracy / architecture
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.