Issue |
E3S Web of Conf.
Volume 396, 2023
The 11th International Conference on Indoor Air Quality, Ventilation & Energy Conservation in Buildings (IAQVEC2023)
|
|
---|---|---|
Article Number | 02013 | |
Number of page(s) | 5 | |
Section | Ventilation and Airflow in Buildings | |
DOI | https://doi.org/10.1051/e3sconf/202339602013 | |
Published online | 16 June 2023 |
Numerical investigation on indoor aerosol dispersion due to natural ventilation with single-sided opening
1 Graduate Student, Department of Architecture, Shinshu University, Nagano, Japan
2 Associate Professor, Environmental Civil Engineering and Architecture, Nagoya University, Aichi, Japan
3 Professor, Department of Architecture, Tokyo University of Science, Tokyo, Japan
4 Assistant Professor, Department of Architecture, Tokyo University of Science, Tokyo, Japan
* Corresponding author: 22w5029k@shinshu-u.ac.jp
The purpose of this study is to evaluate the characteristics of ventilation runoff of particles. Using CFD analysis, the indoor space with the single-side opening model is filled with particles and passive scalar to provide differential temperature ventilation. The RANS and the LES analysis methods, as well as the size and the number of particles generated in a room, will be changed to compare the indoor concentration and ventilation rate trends. The particles are assumed to be water particles that do not evaporate. As the result with the turbulence models, the LES analysis tended to be closer to the passive scalar and theoretical behavior characteristics for small particles than the RANS analysis, because the diffusion of particles is also considered. As the result with the number of particles, the behavior characteristics of the LES analysis became closer to that of the passive scalar as the number of particles increased. As the result of the size of particles, in this model particles larger than 10 µm are deposited indoors by gravitational settling, increasing the percentage removed from the indoors. Therefore, it can be concluded that the risk of infection is reduced without ventilation for particles above 10 µm in this model.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.