Issue |
E3S Web of Conf.
Volume 405, 2023
2023 International Conference on Sustainable Technologies in Civil and Environmental Engineering (ICSTCE 2023)
|
|
---|---|---|
Article Number | 01013 | |
Number of page(s) | 17 | |
Section | Agrochemistry | |
DOI | https://doi.org/10.1051/e3sconf/202340501013 | |
Published online | 26 July 2023 |
Aqueous drilling fluids systems incorporated with green nanoparticles and industrial spent caustic: Optimum rheology and filtration loss properties
1 Petroleum Engineering Department, Faculty of Engineering, Soran University, Kurdistan region, Iraq.
2 Chemical Engineering Department, Faculty of Engineering, Soran University, Kurdistan Region, Iraq.
3 Research Group, Biogeochemistry & Modelling of the Earth System, Université Libre de Bruxelles, Belgium.
* Corresponding author: ibtisam.kamal@soran.edu.iq
Drilling fluids are one of the most significant components of drilling operations for proper functions including fluid loss reduction into the formation and outstanding rheological properties. The drilling fluids according to environmental regulations and governmental rules have to be friendly to the environment to lessen the negative effects on the environment and improve safety. In the current study, a cost-effective industrial alkali waste (spent caustic) was used as a pH controller along with the environmentally friendly uncoated and Chitosan-coated green magnetite nanoparticles (MNPs) in water-based drilling fluid systems. The study focuses on exploring the impact of the alkali waste compared to the conventional alkali (NaOH) on rheology and filtration loss properties. The flow models of the drilling fluid systems were examined. The results proved that the drilling fluid formulated with polymer-coated green MNPs and waste alkali exhibited higher rheological properties and lower mud cake thickness and filtration volume compared to the reference fluid, thus, the waste alkali could replace NaOH as a pH controller. The flow behavior of new fluids could be described precisely using the Herschel-Bulkley flow model. Whereas, the Bingham plastic flow model described the fluid systems incorporated with uncoated and polymer-coated green NPs and NaOH.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.