Issue |
E3S Web of Conf.
Volume 405, 2023
2023 International Conference on Sustainable Technologies in Civil and Environmental Engineering (ICSTCE 2023)
|
|
---|---|---|
Article Number | 04017 | |
Number of page(s) | 10 | |
Section | Sustainable Technologies in Construction & Environmental Engineering | |
DOI | https://doi.org/10.1051/e3sconf/202340504017 | |
Published online | 26 July 2023 |
ANN in forecasting Missing Rainfall Data
Department of Civil Engineering, Dr D Y Patil Institute of Technology, Pimpri, Pune, India.
* Corresponding author: jagottam.agrawal@dypvp.edu.in
ANN has been used to estimate rainfall data by analysing patterns and mapping the correlation between historical data and weather patterns. ANNs are a type of machine learning algorithm that is modelled on the structure of the human brain, which makes them particularly effective for solving complex problems that involve large amounts of data. Overall, the use of ANNs for estimating rainfall data is a promising area of research that has the potential to provide valuable insights into weather patterns and their impacts on the environment and human society. The potential of ANN in the estimation of missing precipitation values has been investigated in detail. This study proposes to compare the performance of conventional methods as well as different algorithms of the Artificial Neural Network method to predict missing rainfall in the Upper Tapi catchment area in the West region of India. It was found that the ANN method has an edge over the conventional methods and proved to be a better method of finding the missing rainfall data values.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.