Issue |
E3S Web of Conf.
Volume 410, 2023
XXVI International Scientific Conference “Construction the Formation of Living Environment” (FORM-2023)
|
|
---|---|---|
Article Number | 02004 | |
Number of page(s) | 6 | |
Section | Reliability of Buildings and Constructions | |
DOI | https://doi.org/10.1051/e3sconf/202341002004 | |
Published online | 09 August 2023 |
Punching shear strength under static and dynamic loads
1 Moscow State University of Civil Engineering, 26, Yaroslavskoye shosse, Moscow, 129337, Russia
2 JSC “Central Research and Design and Experimental Institute of Industrial Buildings and Structures - TsNIIPromzdaniy”, 46, Dmitrovskoe Shosse, 127238, Moscow, Russia
* Corresponding author: nik-trekin@yandex.ru
Modern domestic calculation methods and developed countries for determining the bearing capacity of monolithic reinforced concrete slabs for punching do not fully take into account all factors of design solutions and operating conditions. The available design provisions are made for the static operation of structures and there are no recommendations for taking into account the features of the dynamic impact on the overlap and the nature of the work of the node interfaces. The accepted empirical assumptions of the calculation, based on numerous experimental data, do not take into account the features of the stress-strain state of the coupling of the overlap with the column during destruction according to the punching scheme. This is due to the lack of computational models in which all the acting internal forces ensuring the resistance of the interface to penetration would be considered comprehensively. The complexity of the problem is due to the fact that the sections of the nodal interface are in an inhomogeneous stressed state. The stress-strain state of plates for punching under dynamic load is currently little studied. This article proposes a method for determining the bearing capacity of a symmetrical nodal coupling of a column with an overlap for punching under static and short-term dynamic loading. The proposed design model of the punching strength is based on the following prerequisites: the resistance to punching of a monolithic reinforced floor consists of the shear resistance along the surface of the reduced punching pyramid formed by the height of the compressed concrete zone; the strength of the concrete shear resistance increases due to volumetric compressive forces on the surface of the reduced punching pyramid; the angle of inclination of the faces of the punching pyramid depends on the loading speed. The obtained theoretical dependences are applicable under static and dynamic loading and are in satisfactory agreement with experimental data.
Key words: coupling of a monolithic floor with a column / static and dynamic load / punching pyramid / tangential stresses / concrete shear strength / punching strength
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.