Issue |
E3S Web Conf.
Volume 414, 2023
2nd International Conference “SUstainable PolyEnergy generation and HaRvesting – SUPEHR23”
|
|
---|---|---|
Article Number | 01006 | |
Number of page(s) | 6 | |
Section | Electrochemical and Alternative Energy Storage | |
DOI | https://doi.org/10.1051/e3sconf/202341401006 | |
Published online | 25 August 2023 |
Double input DC-DC converter for highly flexible and reliable Battery Storage Systems
University of Genova, Department of Electrical, Electronic, Telecommunications Engineering and Naval Architecture
* Corresponding author: luis.vaccaro@unige.it
Battery storage systems are fundamental in UPS applications. UPSs are exploited when high reliability is required. A DC-DC converter is typically used to interface the battery to the inverter to match the different voltage levels. In normal operation, the battery of the UPS is not used and it intervenes only during grid blackout. However, the battery is subjected to deterioration and UPS intervention could fail. In medium and high power UPS, more battery modules are connected in series. If one battery is damaged, all the series is affected. To prevent this issue, a new double-input DC-DC converter is presented in this paper. The two DC sources can be controlled separately, resulting in a system reliability improvement. In addition, the damaged battery is not bypassed; hence the overall system performance can be maximized, since the deteriorated battery can provide energy at a limited rate. Additionally, the proposed converter allows batteries based on different technologies to be mixed together, achieving the best performances from each technology.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.