Issue |
E3S Web of Conf.
Volume 415, 2023
8th International Conference on Debris Flow Hazard Mitigation (DFHM8)
|
|
---|---|---|
Article Number | 01008 | |
Number of page(s) | 4 | |
Section | Processes and Mechanics | |
DOI | https://doi.org/10.1051/e3sconf/202341501008 | |
Published online | 18 August 2023 |
Mass exchange between geophysical flows and beds: Idealised computational modelling using a Herschel-Bulkley rheology
1 Univ. Grenoble-Alpes, INRAE, UR ETNA, 38402 Saint-Martin-d’Hères, France
2 Karlsruher Institut für Technologie, 76131 Karlsruhe, Germany
* Corresponding author: srgoodwin@protonmail.com
A key mechanism by which geophysical flows evolve is mass exchange with the underlying bed, either by entraining material from the bed, or by depositing material. Although it is known that some consequences of these mass exchange processes include changes in the volume, momentum and local rheology of the flow, the circumstances under which specific changes occur are not well-established. Given the enormous number of competing mechanisms present in geophysical flows, it is not surprising that the state of the art for modelling entrainment is essentially still empirical. In this study, we implement a Herschel-Bulkley (non-Newtonian) rheology into an existing open-source Smoothed Particle Hydrodynamics solver (DualSPHysics). This rheology can reasonably represent clay-rich flows, typical of those observed in the French Prealps. We hence undertake a highly-idealised, quantitative investigation of entrainment mechanisms for flows overriding non-fixed beds. For the beds, we vary the yield stress and the depth. Preliminary results reveal a rich variety of behaviours that can be obtained for different bed properties, including both acceleration and deceleration of the flow material. These mechanisms are reminiscent (but not identical) of observations from other studies where geo-materials were used.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.