Issue |
E3S Web of Conf.
Volume 415, 2023
8th International Conference on Debris Flow Hazard Mitigation (DFHM8)
|
|
---|---|---|
Article Number | 01020 | |
Number of page(s) | 4 | |
Section | Processes and Mechanics | |
DOI | https://doi.org/10.1051/e3sconf/202341501020 | |
Published online | 18 August 2023 |
Effects of debris-flow and bed composition on erosion and entrainment
Department of Physical Geography, Utrecht University, Utrecht, The Netherlands
* Corresponding author: l.roelofs@uu.nl
Erosion and entrainment of material by debris flows determine debris-flow volume growth and therefore hazard potential. Recent advances in field, laboratory, and modelling studies have distilled two driving forces behind debris-flow erosion; impact and shear forces. A third factor influencing the (relative) importance of these forces is the viscosity and abundance of the interstitial fluid in the debris flow and the bed. However, how erosion and these forces depend on the composition of the debris flow itself and the composition of the bed remains unclear. Here, we present results of small-scale flume experiments with a loosely packed erodible bed that highlight the far-reaching effects of debris-flow and bed composition on erosion processes and magnitude. We quantify the effects of gravel, clay, and solid fraction in the debris flow on bed erosion. In addition, we quantify the effects of water and clay content of the unconsolidated bed on erosion by a debris flow. We show that debris flow erosion increases linearly when the gravel fraction of a debris flow is increased, which is linked to an increase in both impact and shear forces. We find that debris flow erosion, and the related forces, are non-linearly impacted by the clay and water content of the debris flow and those of the bed. For both the clay content of the debris flow and the bed, an optimum in erosion exists around a specific clay percentage that does not directly relate to an optimum in either shear or impact forces. When the water content of the bed and/or the debris flow is increased, erosion becomes largest when supersaturated conditions occur. These conditions are unrelated to the magnitude of the two erodible forces. This shows that both clay and water content affect erosion by affecting the transfer of pore pressures from the debris flow to the bed. We can therefore conclude that impact and shear forces dictate debris flow erosion in most cases but that their (relative) importance is significantly altered by the means and effectivity of pore pressure transfer from the debris flow to the bed. The latter is highly influenced by the viscosity and abundance of the interstitial fluid of the debris flow and the composition of the bed.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.