Issue |
E3S Web of Conf.
Volume 415, 2023
8th International Conference on Debris Flow Hazard Mitigation (DFHM8)
|
|
---|---|---|
Article Number | 03026 | |
Number of page(s) | 5 | |
Section | Monitoring, Detection and Warning | |
DOI | https://doi.org/10.1051/e3sconf/202341503026 | |
Published online | 18 August 2023 |
Photogrammetrically UAV based terrain data generation and automatic extraction of torrential properties
1 WSL Institute for Snow and Avalanche Research SLF, Davos Dorf, CH 7260
2 Climate Change, Extremes and Natural Hazards in Alpine Regions Research Center CERC, Davos Dorf, CH 7260
3 Swiss Federal Institute for Forest Snow and Landscape Research WSL, Birmensdorf, Zürich, CH 8903
4 University of Zurich, Department of Geography, Zurich, CH 8057
Debris flows are a severe hazard in mountainous regions. However, cost-effective long-term studies of debris flows are seldom, which leads to substantial uncertainties in hazard mitigation methods. This paper investigates whether cost-effective remote sensing techniques can be applied to assess the hazards of mountain torrents and to gather accurate long-term information on the development of the watershed. Torrents that are prone to debris flows are often devoid of vegetation and can thus be well surveyed using photogrammetric methods based on uncrewed aerial vehicle (UAV) surveys. The possibility of extracting automatically torrent parameters from high-resolution terrain models, such as cross-sectional area or slope, is explored. The presented methodology yields continuous and automatically derived parameters along the torrent, which is a major advantage over pointwise field surveys. Cross-validation with field measurements reveals a strong agreement. These parameters are very accurate along highly incised sections, while they are severely limited along sections with steep adjacent hillslopes and/or dense vegetation. We show that these kinds of assessments greatly gain from UAV data followed by automatic parameter extraction. The extracted parameters provide insights so that key sections and weak points can be identified and accurately assessed in the field. We find that UAV data can contribute to a comprehensive, reproducible and objective assessment of torrent processes and predispositions. However, ground-based fieldwork is still essential and further research on remote sensing-based hazard assessment of torrents prone to debris flows is crucial.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.