Issue |
E3S Web of Conf.
Volume 415, 2023
8th International Conference on Debris Flow Hazard Mitigation (DFHM8)
|
|
---|---|---|
Article Number | 05001 | |
Number of page(s) | 4 | |
Section | Case Studies and Hazard Assessments | |
DOI | https://doi.org/10.1051/e3sconf/202341505001 | |
Published online | 18 August 2023 |
Hydrologic-hydraulic modelling in the Vezza catchment (Alpi Apuane, Italy): An area prone to flash floods and debris flows
1 Department of Earth Sciences, University of Florence, Florence, 50121, Italy
2 Dipartimento di Scienze Fisiche, della Terra e dell’Ambiente, Università degli Studi di Siena, Siena, 53100, Italy
3 Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, 38123, Italy
4 Agrosphere Institute (IBG-3), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
5 Department of Soil Science and Engineering, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
* Corresponding author: michele.amaddii@unifi.it
The Alpi Apuane (Italy) are located a few kilometres from the coast of the Ligurian Sea, and they are characterized by peak elevations up to two thousand meters above sea level, as well as narrow, deeply incised valleys and steep slopes. Due to these morphoclimatic conditions, heavy rains are frequent, causing floods, landslides, and debris flows, particularly within the Vezza catchment. In this work we applied two different hydrological-hydraulic models to this catchment, focusing on the catastrophic debris flow event of June 19, 1996. Firstly, recent, well-documented rainfall events were used to validate the engineering geological model of the study area, then we began to analyse the rainfall-runoff and debris flow event of 1996 in the Cardoso sub-catchment. As models, we used the FLO-2D and a novel experimental model, developed by some of the authors and based on TRENT2D, in which the dynamic of a debris flow is fully coupled with the rainfall-runoff response of a basin. Preliminary results show how the used approach allowed us to gain some insight into the hydrological behaviour and debris flows formation, erosion, transport, and deposition in the Cardoso sub-catchment.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.