Issue |
E3S Web Conf.
Volume 416, 2023
3rd International Conference on Oil & Gas Engineering and Geological Sciences (OGEGS 2023)
|
|
---|---|---|
Article Number | 01002 | |
Number of page(s) | 5 | |
DOI | https://doi.org/10.1051/e3sconf/202341601002 | |
Published online | 10 August 2023 |
Study on stress sensitivity of bedding fractures and sand-filled fractures in shale oil reservoirs
School of Petroleum Engineering in China University of Petroleum (East China), Qingdao, 266580, China
* Corresponding author: 20170018@upc.edu.cn
Shale oil reservoirs are characterized by low porosity and ultra-low permeability, and hydraulic fracturing technology is needed to realize industrial oil flow. The sand-filled fractures formed in the shale fracturing process and the bedding fractures developed in the reservoir itself interact to form a shale oil fracture network system, which is the main migration channel for shale oil production. Studies have shown that the higher the degree of fracture development, the stronger the stress sensitivity of the reservoir, and the stress sensitive damage is an important factor that causes the decline of reservoir seepage capacity during shale oil production. In this paper, based on the shale samples in the Jiyang Depression, the flow capacity experiments of bedding fractures and sand-filled fractures were carried out to analyze the stress sensitivity characteristics of shale bedding fractures and sand-filled fractures, and to clarify the seepage capacity decline mechanism of complex fractures in shale. Provide experimental data and theoretical support for productivity prediction of block shale reservoirs after fracturing.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.