Issue |
E3S Web Conf.
Volume 429, 2023
The Third International Conference of Construction, Infrastructure, and Materials (ICCIM 2023)
|
|
---|---|---|
Article Number | 05018 | |
Number of page(s) | 9 | |
Section | Structural Engineering and Materials | |
DOI | https://doi.org/10.1051/e3sconf/202342905018 | |
Published online | 20 September 2023 |
Proposed stress block for no coarse-aggregate concrete
1 Undergraduate Program of Civil Engineering, Universitas Tarumanagara, Jl. Letjen S. Parman No. 1, Jakarta, Indonesia
2 Department of Civil Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
* Corresponding author: danielc@ft.untar.ac.id
Concrete is one of the materials in construction that continues to develop in strength and efficiency. Since most areas in Indonesia are vulnerable to earthquakes, the building structures must be more resistant to seismic forces. Increasing the concrete's strength might reduce the building structure's dimensions and weight, which will also reduced the earthquake force. One example of high-strength concrete is reactive powder concrete (RPC), an innovative concrete with small particle materials to fill in the space within the concrete so it can strengthen the concrete. Despite the advantage, there is still a lack of design provisions for this type of concrete. This research was conducted to analyze the stress-strain diagram curve and the compressive stress block for no-coarse aggregtae concrete. In this research, compression tests have been carried out on 100 mm × 200 mm cylinder samples with concrete compressive strength ranges from 28 to 76 N/mm2. Test results indicate that the actual curve of the stress-strain relationship for concrete without coarse aggregate is almost linear and shaped like a triangle with the maximum strain ranges from 0.006 to 0.008. The energy per unit volume ranges from 0.1175 to 0.3658 N/mm2 and the average force capture point is 0.62626 units. Based on the test results, compression stress block for no-coarse aggregtae concrete are proposed.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.