Issue |
E3S Web Conf.
Volume 430, 2023
15th International Conference on Materials Processing and Characterization (ICMPC 2023)
|
|
---|---|---|
Article Number | 01034 | |
Number of page(s) | 11 | |
DOI | https://doi.org/10.1051/e3sconf/202343001034 | |
Published online | 06 October 2023 |
Automation of Credit Card Customer Churn Analysis using Hybrid Machine Learning Models
1 Department of CSE (AI & ML), GRIET, Hyderabad, Telangana State, India
2 Uttaranchal Institute of Technology, Uttaranchal University, Dehradun, 248007, India
3 KG Reddy College of Engineering & Technology, Hyderabad, India
* Corresponding author: ramkumar1695@grietcollege.com
Credit Card Customer Churn Analysis (C4A) is a phenomenon where customers stop using a specific business credit card service. Predicting customer churn is crucial for Credit Card (CC) companies because it enables them to spot at-risk customers and take precautions to retain them. The aim of the paper named C4A is to create a model that accurately predicts customers who are most likely to stop using CC. The paper involves gathering and analyzing customer information from Kaggle, including transaction history, demographics and credit card usage patterns for prediction. Machine learning algorithms namely, Logistic Regression, KNN, XGBoost Classifier, Decision Tree and Hybrid Models integrating Logistic Regression and KNN, Logistic Regression and Decision Tree are used to train to find patterns and correlations that point to customer churn. The accuracy of the proposed method is 0.846 with LR, 0.849 with KNN, 0.90 with a hybrid model integrating LR and KNN, 0.928 by integrating LR and DT, 0.91 with DT, and 0.93 with XGBoost.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.