Issue |
E3S Web Conf.
Volume 430, 2023
15th International Conference on Materials Processing and Characterization (ICMPC 2023)
|
|
---|---|---|
Article Number | 01101 | |
Number of page(s) | 9 | |
DOI | https://doi.org/10.1051/e3sconf/202343001101 | |
Published online | 06 October 2023 |
Characterization of Microstructure and Properties of Additively Manufactured Materials under Room and Elevated Temperatures
1 Departement of Mechanical Engineering, GLA University, Mathura, UP, India
2 Institute of Aeronautical Engineering, Hyderabad, India
3 Lloyd Institute of Engineering & Technology, Knowledge Park II, Greater Noida, Uttar Pradesh 201306
4 Lloyd Institute of Management and Technology, Plot No.-11, Knowledge Park-II, Greater Noida, Uttar Pradesh, India - 201306
5 Hilla University College, Babylon, Iraq
6 Lovely Professional University, Phagwara, India
* Corresponding author: balajiboopathimech@gmail.com
The utilisation of additive manufacturing (AM) has brought about a significant transformation in the manufacturing process of materials and components, since it allows for the creation of complex geometries and customised designs. The primary objective of this study is to conduct a thorough analysis of the microstructure and characteristics of materials produced by additive manufacturing techniques, including the effects of varying temperatures ranging from ambient temperature to increased levels. Microstructural analysis encompasses several methods, including optical microscopy, scanning electron microscopy (SEM), and X-ray diffraction (XRD), which are employed to investigate the grain structure, porosity, and phase composition. Standardised testing procedures are employed to assess mechanical qualities, such as tensile strength, hardness, and fracture toughness. temperature analysis methods, such as differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA), are utilised in order to examine the temperature stability and phase transitions. This study investigates the impact of various printing factors, including layer thickness, printing speed, and build orientation, on the resultant microstructure and characteristics. This study aims to address the disparity between theoretical understanding and actual implementation, therefore facilitating the wider use of additively made materials in businesses that need exceptional performance in many environments.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.