Issue |
E3S Web Conf.
Volume 430, 2023
15th International Conference on Materials Processing and Characterization (ICMPC 2023)
|
|
---|---|---|
Article Number | 01123 | |
Number of page(s) | 11 | |
DOI | https://doi.org/10.1051/e3sconf/202343001123 | |
Published online | 06 October 2023 |
Development of Multifunctional Nanomaterials and Devices for Biomedical Applications
1 Department of Mechanical Engineering, New Horizon College of Engineering, Bangalore
2 Institute of Aeronautical Engineering, Hyderabad, India
3 Lloyd Institute of Engineering & Technology, Knowledge Park II, Greater Noida, Uttar Pradesh 201306
4 Lloyd Institute of Management and Technology, Plot No.-11, Knowledge Park-II, Greater Noida, Uttar Pradesh, India - 201306
5 Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq.
6 Lovely Professional University, Jalandhar-Delhi G.T. Road (NH-1), Phagwara, Punjab ( INDIA ) – 144411
* Corresponding Author: amanuknr@gmail.com
The development of multifunctional nanomaterials and devices for biomedical applications has garnered significant attention in recent years due to their potential to revolutionize healthcare. In this study, we report the synthesis and characterization of novel nanomaterials with tailored properties for targeted drug delivery, imaging, and biosensing applications. We employed a bottom-up approach to design and fabricate nanocomposites comprising of biocompatible polymers, metallic nanoparticles, and quantum dots, which exhibit unique optical, magnetic, and electronic properties. The nanocomposites were functionalized with specific ligands to enable active targeting of cancer cells and pathogens. We also developed microfluidic devices for the efficient capture and analysis of circulating tumor cells (CTCs) using the synthesized nanomaterials. The performance of the nanomaterials and devices was evaluated in vitro and in vivo, demonstrating enhanced drug delivery efficiency, high-resolution imaging, and sensitive biosensing capabilities. Furthermore, we investigated the biocompatibility and long-term stability of the nanomaterials in physiological conditions. Our findings indicate that the developed multifunctional nanomaterials and devices hold great promise for advancing personalized medicine, early diagnosis, and targeted therapy. This study provides a comprehensive understanding of the design principles and potential applications of multifunctional nanomaterials in the biomedical field, paving the way for future research and clinical translation.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.