Issue |
E3S Web Conf.
Volume 430, 2023
15th International Conference on Materials Processing and Characterization (ICMPC 2023)
|
|
---|---|---|
Article Number | 01140 | |
Number of page(s) | 9 | |
DOI | https://doi.org/10.1051/e3sconf/202343001140 | |
Published online | 06 October 2023 |
Revolutionizing Material Science: Exploring the Novel Applications of Thermally-Enhanced Processes in Next-Generation Materials
1 Department of Mechanical and Industrial Engineering, Manipal Institute of Technology Bengaluru, Manipal Academy of Higher Education, Manipal - 576104, Karnataka ( India )
2 Institute of Aeronautical Engineering, Hyderabad, India
3 Lloyd Institute of Engineering & Technology, Knowledge Park II, Greater Noida, Uttar Pradesh 201306
4 Lloyd Institute of Management and Technology, Plot No.-11, Knowledge Park-II, Greater Noida, Uttar Pradesh, India - 201306
5 Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq.
6 Lovely Professional University, Jalandhar-Delhi G.T. Road (NH-1), Phagwara, Punjab ( INDIA ) – 144411
* Corresponding Author: bpravallika03@gmail.com
With the emergence of novel thermally accelerated methods, the area of material science has undergone a paradigm shift, opening up previously unimaginable possibilities for the creation of next-generation materials with improved properties and functionalities. In order to shape the materials of the future, this paper explores the ground-breaking uses of thermally accelerated techniques such quick thermal annealing, spark plasma sintering, and laser-assisted deposition. Due to sluggish diffusion rates and incomplete reactions, traditional materials synthesis and processing processes frequently have trouble producing materials with the appropriate characteristics. This allows for accurate atomic-level manipulation of material microstructures. The engineering of materials with specific mechanical, electrical, thermal, and optical properties is made possible by the fine-tuning of microstructures. The importance of thermally accelerated processes in a variety of material classes, including metals, ceramics, polymers, and composites, is highlighted in this research. The use of thermally enhanced processes shows potential in promoting sustainable practises, as materials play a crucial part in addressing global concerns. These procedures help to reduce waste and conserve resources by enabling the effective recycling and upcycling of materials through controlled thermal treatments. The report also highlights the potential effects of thermally enhanced techniques on future industries such as flexible electronics, renewable energy systems, and medicinal devices, where specialised materials with outstanding performance are crucial.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.