Issue |
E3S Web Conf.
Volume 431, 2023
XI International Scientific and Practical Conference Innovative Technologies in Environmental Science and Education (ITSE-2023)
|
|
---|---|---|
Article Number | 08007 | |
Number of page(s) | 8 | |
Section | Climate-Friendly Freight Transport and Logistics | |
DOI | https://doi.org/10.1051/e3sconf/202343108007 | |
Published online | 13 October 2023 |
Numerical simulation of the stress-strain state of snow and ice layer on the road when it is destroyed under the influence of the proposed device
Sholom-Aleichem Priamursky State University, 679015 Jewish Autonomous Region, Birobidzhan, Russian Federation
* Corresponding author: Vasil-grunt@mail.ru
In the winter season, we can observe the increased number of personal injuries and road vehicle accidents because of ice coating on paved roads. Surface refining from icing field involves two process operations: breaking it up and transporting the resulting segments. The basic process prevailing in cleaning effective output is the cutting process, i.e. the separation of icy fragments from the pavement with the cutting tools of special machines. The purpose of the research is to simulate the ice crust breaking influenced by the device designed by the authors. The modeling of ice flow failure is rather complicated and not a trivial task. An advanced Lagrangian model is applied in a modern software system. As a result, based on a computing model implemented in ANSYS software system, we have developed an algorithm for determining a mode of the ice crust deformation caused by the circular cutters put into it. The review of the stress strain behavior of ice crust shows that the biggest movement of ice crust fractions arises along the outline (perimeter) of discs and at the surface of the cover. The greatest equivalent stresses are observed along the disc outline (perimeter). The middle part of the disc (approaching to the centre) is nearly involved in equipment operation. The greatest displacement of icy particles is along the disc contour, while they are near zero along the edges. In the paper, we also determined recoverable and shearing deformations, regular and shear stresses in the ice crust at different thickness and movement speed of the device. The calculated motion rate and ice coating thickness at which the destructive effect is most distinctive, has been found out.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.