Issue |
E3S Web of Conf.
Volume 452, 2023
XV International Online Conference “Improving Farming Productivity and Agroecology – Ecosystem Restoration” (IPFA 2023)
|
|
---|---|---|
Article Number | 06022 | |
Number of page(s) | 11 | |
Section | Energy-Efficient Construction and Renovation | |
DOI | https://doi.org/10.1051/e3sconf/202345206022 | |
Published online | 30 November 2023 |
Stress-strain state of combined steel-FRP reinforced concrete beams
Namangan Engineering Construction Institute, 2J5J+26X Namangan, Uzbekistan
* Corresponding author: ravshanbek.mavlonov@gmail.com
Steel reinforcements in reinforced concrete structures are susceptible to corrosion under different exposure conditions. This can lead to some disadvantages, including concrete deterioration, reduced long-term service life, increased cost of the structure due to re-strengthening measures, and reduced overall durability of the structure. In order to solve these problems, the issue of comprehensive use of Fiber reinforced polymer (FRP) reinforcements as an alternative to steel bars is urgent. FRP reinforcements have specific advantages including corrosion resistance, high tensile strength, density four times lighter than steel, and also linear expansion coefficient under the influence of temperature is small like concrete. In order to increase the load bearing capacity and ductility, it is recommended to effectively use steel rebar together with FRP rebar as a combination reinforcement, taking into account brittleness characteristic of FRP reinforcement and low modulus of elasticity. In this article, concrete beams with combined reinforcement are modelled by using ANSYS Workbench 2022 software. By testing virtual model, deflection corresponding to the value of the applied load on the beam, compressive and tensile stresses in the concrete, and stresses in FRP and steel reinforcement located in the tension zone were determined and analyzed.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.