Issue |
E3S Web Conf.
Volume 564, 2024
International Conference on Power Generation and Renewable Energy Sources (ICPGRES-2024)
|
|
---|---|---|
Article Number | 07011 | |
Number of page(s) | 12 | |
Section | Signal Processing | |
DOI | https://doi.org/10.1051/e3sconf/202456407011 | |
Published online | 06 September 2024 |
Tampered energy meter information conveyed to concerned authority by wireless communication
1 Associate Professor, Department of Electronics and Communication Engineering, Aditya Engineering College, Surampalem, India
2 Department of Structurals Techniques Engineering, College of Technical Engineering, The Islamic University, Najaf, Iraq; Department of Structurals Techniques Engineering, College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Department of Structurals Techniques Engineering, College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
3 Assistant Professor, Department of ECE, CMR Institute of Technology, Hyderabad
4 Department of Electronics & Communication Engineering, Uttaranchal Institute of Technology, Uttaranchal University, Dehradun, 248007, India
5 Department of Mechanical, GRIET, Hyderabad, Telangana, India
* Corresponding author: hariprasad.satti@aec.edu.in
Utility companies face a serious problem with energy metre manipulation, which can result in lost income, inaccurate invoicing, and safety issues. Maintaining fair billing practices and the integrity of energy distribution systems depend on the prompt detection of tampering incidents. Nevertheless, current detection techniques frequently fall short in terms of effectiveness and fail to promptly notify authorities. In order to overcome this difficulty, our research suggests a novel method for identifying energy metre tampering and sending pertinent data via wireless communication technologies. The principal objective is to create a dependable system that can precisely identify instances of tampering in real-time and send alerts to relevant authorities with ease. Our solution is carefully designed to fill in the research gaps by drawing on a thorough assessment of the literature on wireless communication protocols and tampering detection techniques. Our solution delivers accurate and quick detection of tampering situations by utilising complex wireless communication protocols, modern sensor technology, and sophisticated data processing algorithms. The system architecture combines a wireless communication module with tampering detection sensors to quickly transmit notifications to the relevant authorities. Extensive tests are carried out to verify the functionality of the system, assessing critical parameters including alert reliability, response speed, and detection accuracy. Our experimental results highlight the effectiveness and reliability of the suggested approach in real-time alerting authorities and identifying tampered energy metres. This study makes a substantial contribution to the field of energy metre tampering detection and emphasises the critical role that wireless communication technologies play in preserving the integrity and security of energy distribution networks. In conclusion, our study presents a novel method for identifying energy metre tampering and wirelessly communicating vital information to authorities. Our research establishes a new benchmark in energy metre tampering detection by providing improved accuracy, efficiency, and timeliness, which promotes increased resilience and security in energy distribution networks.
© The Authors, published by EDP Sciences, 2024
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.