Issue |
E3S Web Conf.
Volume 601, 2025
The 3rd International Conference on Energy and Green Computing (ICEGC’2024)
|
|
---|---|---|
Article Number | 00084 | |
Number of page(s) | 16 | |
DOI | https://doi.org/10.1051/e3sconf/202560100084 | |
Published online | 16 January 2025 |
2D Motions Response Analysis of Floating Offshore Wind Turbine with Various Barge Shapes
Department of Marine Engineering, Faculty of Engineering Hasanuddin University, 92171 Gowa South Sulawesi, Indonesia
* Corresponding author: f.mahmuddin@unhas.ac.id
Indonesia has the potential to develop floating wind turbines at sea. Therefore, its movement response needs to be analyzed to ensure that the turbine works properly. This research aims to determine the floating offshore wind turbine barge’s movement response with different floater shapes to regular waves from three different directions (0°, 45°, 90°). The movement response of the floating wind turbine was analyzed using the diffraction and radiation analysis methods in Ansys Aqwa. The research results include the RAO curve for the structure in a couple of two degrees of freedom (heave-pitch) combined with 2-dimensional analyses. The motion response of the floater cube has a maximum value heave motion 0.999 m/m and pitch motion 2.228 °/m, and, the cylindrical shape has a heave motion 1.132 m/m and pitch 10.050 °/m. Lastly, the octagonal has a heave motion 1.010 m/m and pitch 2.565 °/m. The shape and volume of each model affect the response value obtained. The simulation results in this paper can provide considerations in selecting the right floater shape to be used as a wind turbine floater foundation.
© The Authors, published by EDP Sciences, 2025
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.