Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Neural network model for predicting the horizontal component of Earth’s magnetic field (H) over Indian equatorial region during quiet and disturbed periods

S. Sajith Babu, K. Unnikrishnan and Sreekumar Haridas
Advances in Space Research 75 (4) 3705 (2025)
https://doi.org/10.1016/j.asr.2024.12.014

Using Classification Methods in Forecasting the Level of Geomagnetic Field Disturbance Based on the Kp-Index

I. M. Gadzhiev, O. G. Barinov, I. N. Myagkova and S. A. Dolenko
Geomagnetism and Aeronomy 64 (3) 415 (2024)
https://doi.org/10.1134/S0016793224600140

Структура и динамика векторных графов межпланетного магнитного поля

Ю. А. Антонов, В. И. Захаров, И. Н. Мягкова, Н. А. Сухарева and Ю. С. Шугай
Космические исследования 62 (2) 210 (2024)
https://doi.org/10.31857/S0023420624020076

Using classification methods in forecasting the level of geomagnetic field disturbance based on the Kp-Index

I. M. Gadzhiev, О G. Barinov, I. N. Myagkova and S. A. Dolenko
Geomagnetizm i aèronomiâ 64 (3) 441 (2024)
https://doi.org/10.31857/S0016794024030104

Structure and Dynamics for Graphs of Interplanetary Magnetic Field Vectors

J. A. Antonov, V. I. Zakharov, I. N. Myagkova, N. A. Suhareva and J. S. Shugai
Cosmic Research 62 (2) 147 (2024)
https://doi.org/10.1134/S0010952523600336

Forecasting the State of the Earth’s Magnetosphere Using a Special Algorithm for Working with Multidimensional Time Series

R. D. Vladimirov, V. R. Shirokiy, O. G. Barinov, S. A. Dolenko and I. N. Myagkova
Moscow University Physics Bulletin 79 (S2) S798 (2024)
https://doi.org/10.3103/S0027134924702266

I.G. Persiantsev’s Scientific School at the Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics: History of Development and Overview of Key Works

S. A. Dolenko
Pattern Recognition and Image Analysis 33 (4) 1564 (2023)
https://doi.org/10.1134/S1054661823040132

Comparison of the Efficiency of Machine Learning Methods in Studying the Importance of Input Features in the Problem of Forecasting the Dst Geomagnetic Index

R. D. Vladimirov, V. R. Shirokiy, I. N. Myagkova, O. G. Barinov and S. A. Dolenko
Геомагнетизм и аэрономия 63 (2) 190 (2023)
https://doi.org/10.31857/S0016794022100224

Comparison of the Efficiency of Machine Learning Methods in Studying the Importance of Input Features in the Problem of Forecasting the Dst Geomagnetic Index

R. D. Vladimirov, V. R. Shirokiy, I. N. Myagkova, O. G. Barinov and S. A. Dolenko
Geomagnetism and Aeronomy 63 (2) 161 (2023)
https://doi.org/10.1134/S0016793222600795

The Significance of Input Features for Domain Adaptation of Spacecraft Data

E. Z. Karimov, I. N. Myagkova, V. R. Shirokiy, O. G. Barinov and S. A. Dolenko
Cosmic Research 61 (6) 554 (2023)
https://doi.org/10.1134/S0010952523700466

The Significance of Input Features for Domain Adaptation of Spacecraft Data

E. Z. Karimov, I. N. Myagkova, V. R. Shirokiy, O. G. Barinov and S. A. Dolenko
Космические исследования 61 (6) 530 (2023)
https://doi.org/10.31857/S0023420623600125

Fast Dst computation by applying deep learning to Swarm satellite magnetic data

Gianfranco Cianchini, Alessandro Piscini, Angelo De Santis and Saioa A. Campuzano
Advances in Space Research 69 (2) 837 (2022)
https://doi.org/10.1016/j.asr.2021.10.051

Development of 24 hours Dst index prediction from solar wind data and IMF Bz using NARX

F Nuraeni, M Ruhimat, M A Aris, E A Ratnasari and C Purnomo
Journal of Physics: Conference Series 2214 (1) 012024 (2022)
https://doi.org/10.1088/1742-6596/2214/1/012024

The Use of Coupling Functions in the Forecasting of the Dst-Index Amplitude with Adaptive Methods

I. N. Myagkova, V. R. Shirokii, V. V. Kalegaev, O. G. Barinov and S. A. Dolenko
Geomagnetism and Aeronomy 61 (1) 138 (2021)
https://doi.org/10.1134/S0016793220060092

Prediction of the Dst Geomagnetic Index Using Adaptive Methods

I. N. Myagkova, V. R. Shirokii, R. D. Vladimirov, O. G. Barinov and S. A. Dolenko
Russian Meteorology and Hydrology 46 (3) 157 (2021)
https://doi.org/10.3103/S1068373921030031

The use of long short-term memory and gated recurrent unit for predicting the values of geomagnetic indices

А.В. Мочалова and В.А. Мочалов
Вестник КРАУНЦ. Физико-математические науки (4) 110 (2020)
https://doi.org/10.26117/2079-6641-2020-33-4-110-121

The Prediction of the Dst-Index Based on Machine Learning Methods

A. O. Efitorov, I. N. Myagkova, V. R. Shirokii and S. A. Dolenko
Cosmic Research 56 (6) 434 (2018)
https://doi.org/10.1134/S0010952518060035