Issue |
E3S Web Conf.
Volume 31, 2018
The 2nd International Conference on Energy, Environmental and Information System (ICENIS 2017)
|
|
---|---|---|
Article Number | 10008 | |
Number of page(s) | 4 | |
Section | 10. Industrial Information Systems | |
DOI | https://doi.org/10.1051/e3sconf/20183110008 | |
Published online | 21 February 2018 |
The Design of The Monitoring Tools Of Clean Air Condition And Dangerous Gas CO, CO2 CH4 In Chemical Laboratory By Using Fuzzy Logic Based On Microcontroller
Department of Computer Engineering, Politeknik Negeri Sriwijaya, Palembang, Indonesia
* Corresponding author: slametwidodo160573@gmail.com
There are many phenomena that human are exposed to toxins from certain types such as of CO2, CO2 and CH4 gases. The device used to detect large amounts of CO, CO2, and CH4 gas in air in enclosed spaces using MQ 135 gas sensors of different types based on the three sensitivity of the Gas. The results of testing the use of sensors MQ 135 on the gas content of CO, CO2 and CH4 received by the sensor is still in the form of ppm based on the maximum ppm detection range of each sensor. Active sensor detects CO 120 ppm gas, CO2 1600 ppm and CH4 1ppm "standby 1" air condition with intermediate rotary fan. Active sensor detects CO 30 ppm gas, CO2 490 ppm and CH4 7 ppm "Standby 2" with low rotating fan output. Fuzzy rulebase logic for motor speed when gas detection sensor CO, CO2, and CH4 output controls the motion speed of the fan blower. Active sensors detect CO 15 ppm, CO2 320 ppm and CH4 45 ppm "Danger" air condition with high fan spin fan. At the gas level of CO 15 ppm, CO2 390 ppm and CH4 3 ppm detect "normal" AC sensor with fan output stop spinning.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.