Issue |
E3S Web Conf.
Volume 40, 2018
River Flow 2018 - Ninth International Conference on Fluvial Hydraulics
|
|
---|---|---|
Article Number | 06010 | |
Number of page(s) | 8 | |
Section | Extreme events | |
DOI | https://doi.org/10.1051/e3sconf/20184006010 | |
Published online | 05 September 2018 |
1D/2D porosity model for urban flood modeling: case of a dense street networks
1
ICube laboratory (UMR 7357), fluid mechanics team, ENGEES, 1 quai Koch, 67000 Strasbourg, France
2
ICube laboratory (UMR 7357), fluid mechanics team, INSA Strasbourg, 24 boulevard de la victoire, 67084 Strasbourg cedex, France
* e-mail: pascal.finaudguyot@engees.unistra.fr
An increasing urbanization of floodplains has led to higher vul- nerability of urban areas and building a new generation of robust, accurate and computationally affordable models dedicated to urban floods is highly re- quired for improving prediction systems and mitigation measures. A better understanding of urban floods hydrodynamics may also be required. In view to achieve computationally affordable and reliable simulations a new 1D/2D parsimonious hydraulic model Flood1D2D is introduced for flood modeling in complex branched urban networks. It takes advantage of a cut-cell technique and a new effective model able to take into account some essential sub-grid flow features such as flow vein contractions due to recirculations downstream of a crossroad. It is shown that this local phenomenon can be correctly repro- duced thanks to this 1D/2D coupled SW model parameterized with roughness and porosity. The ability of the model to reproduce realistic flood discharge distributions at the subdistrict scale is also tested on a part of the branched net- work of ICUBE experimental rig. Further studies should tackle the issues of calibration and unsteady modeling.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.