Issue |
E3S Web Conf.
Volume 40, 2018
River Flow 2018 - Ninth International Conference on Fluvial Hydraulics
|
|
---|---|---|
Article Number | 06033 | |
Number of page(s) | 8 | |
Section | Extreme events | |
DOI | https://doi.org/10.1051/e3sconf/20184006033 | |
Published online | 05 September 2018 |
Experimental validation of transient source term in porosity-based shallow water models
1
HydroSciences Montpellier, Univ. Montpellier, CNRS, IRD, Montpellier, France
2
Inria Lemon, Inria, Montpellier, France
3
Institute of Mechanics, Materials and Civil Engineering, Université catholique de Louvain, Belgium
* Corresponding author: sandra.soares-frazao@uclouvain.be
Porosity-based shallow water models for the simulation of urban floods incorporate additional energy dissipation terms compared to the usual two-dimensional shallow water equations. These terms account for head losses stemming from building drag. They are usually modelled using turbulence-based equations of state (drag proportional to the squared velocity). However, refined numerical simulations of wave propagation in periodic urban layouts indicate that such drag models do not suffice to reproduce energy dissipation properly. Correct wave propagation speeds, energy dissipation rates and flow fields are obtained by incorporating a new type of source term, active only under transient situations involving positive waves. This source term does not take the form of an equation of state. It can be modelled as an artificial increase in water inertia. In this communication, an experimental validation of this source term model is presented by means of new dam-break flow experiments in idealized, periodic urban layouts. The experimental results validate both the existence and the proposed formulation of this new source term.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.