Issue |
E3S Web Conf.
Volume 56, 2018
VII International Scientific Conference “Problems of Complex Development of Georesources” (PCDG 2018)
|
|
---|---|---|
Article Number | 04019 | |
Number of page(s) | 7 | |
Section | Strategic, Geo-Environmental and Economic Problems of Subsurface Use | |
DOI | https://doi.org/10.1051/e3sconf/20185604019 | |
Published online | 26 September 2018 |
Local seismicity alterations in the South Yakutia mining region due to the technogenic impact on its geological environment
1
Technical Institute (Branch), Amosov North-Eastern Federal University, Neryungri, Russia
2
Institute of the Earth’s Crust, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia
3
Academy of Sciences of the Republic of Sakha (Yakutia), 677007, 33 Lenina, Yakutsk, Russia
* Corresponding author: grib@nfygu.ru
Impulse loads, arising due to the high natural seismicity of the South Yakutia region, exercise both direct and indirect effects on the upper part of the Earth's crust during industrial explosions. The direct effects result from nonlinear displacements caused by the blast wave and the subsequent formation of new disturbances. The indirect effects arise due to the activation of structural elements along geological contacts, leading to the emergence of technogenic seismicity foci. The foci of induced seismicity are either confined to the blast points, or located along the tectonic structures crossing quarry fields. The technogenic impact on the geological environment transforms the independent local seismic process, since explosions trigger a chain of local seismic events. The near-surface layers of the Earth's crust become activated in the area of dynamic influence of active faults. Under the influence of explosions, both the number of seismic events and the average level of released energy alter. Impulse loads on the geological environment lead to a spatial redistribution of the foci of low-energy (K <7) earthquakes. The main form of the geodynamic development of seismogenic faults is the movement of their sides in the form of mutual “slippage”. Seismic events are manifested only when the aforementioned form of deformation is impossible or difficult to develop, in other words, when the stress-state areas of the Earth's crust develop. Therefore, the shaking impact of blasts can be considered as a factor contributing to the predominance of aseismic forms of fault motion in the form of smooth slippage of their sides. In conclusion, the impact of industrial blasts can not only activate faults around the mining area, but also have an unloading effect on the foci of seismic hazard forming in the interior, i.e. the redistribution of earthquake energy in terms of reducing earthquake energy class.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.