Issue |
E3S Web Conf.
Volume 111, 2019
CLIMA 2019 Congress
|
|
---|---|---|
Article Number | 01090 | |
Number of page(s) | 6 | |
Section | Advanced HVAC&R&S Technology | |
DOI | https://doi.org/10.1051/e3sconf/201911101090 | |
Published online | 13 August 2019 |
Numerical Analysis for Smoke Spread in an Aircraft Hangar
1,2 Mechanical Power Department, Faculty of Engineering - Cairo University, Egypt
3,4 Mechanical Power Department, Faculty of Engineering - IAET, Egypt
Smoke is one of the most dangerous factors in aircraft hangar in case of fire. As it causes reduce in visibility and deaths due to high temperature or toxicity also prevents applying evacuation plan for workers. This study present numerical analysis for improving traditional system of ventilation system to manage smoke produced due to push-back vehicle on fire at hangar. By studying effect of changing extraction and supply rates, the number of extraction and supply fans, and the arrangement of extraction and supply fans on the visibility, temperature and air velocity at human level to insure not to exceed limits stated by NFPA 130[1] to apply evacuation plan for workers. The study is performed using Fire dynamic simulator to simulate 16 case studies in the hangar of airports in Brandenburg. The hangar has the outer dimensions of 83.40 m width and 77.60 m depth and thus an inner area of approx. 6,472 m2. The hangar has a medium interior height of approximately 18.20 m. The results show that using extraction fans with rate (ACH) double the supply rate for the traditional ventilation system gives very good results in controlling the smoke. As well as, decreasing the number of supply fans will make the smoke spread rate inside the hangar lower, which helps to control the smoke spread of fire in less time.
Key words: Aircraft Hangar / ventilation / smoke control / Fire Dynamics Simulator.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.