Issue |
E3S Web Conf.
Volume 111, 2019
CLIMA 2019 Congress
|
|
---|---|---|
Article Number | 06002 | |
Number of page(s) | 8 | |
Section | Sustainable Urbanization and Energy System Integration | |
DOI | https://doi.org/10.1051/e3sconf/201911106002 | |
Published online | 13 August 2019 |
Grid-edge technology - Exploring the flexibility potential of a heat pump and thermal energy storage system
Galway-Mayo Institute of Technology, Department of Mechanical and Industrial Engineering, Galway, Ireland
* Corresponding author: christoph.schellenberg@research.gmit.ie
Grid-edge technologies (GET) enable and amplify the impact of three emerging energy system trends: electrification, decentralisation, and digitalisation. Smart grid integrated heat pumps with thermal energy storage enable both the electrification of heating and decentralised demand response. Such power-to-heat technologies simultaneously decarbonise heating and facilitate the grid integration of more variable renewable electricity in a cost-effective manner. This may help to explore and exploit untapped wind generation potential. This study explores the flexibility potential of a domestic scale heat pump with thermal energy storage in a typical Irish home in December. The system is simulated to investigate demand-side flexibility and sensitivity to both heat pump and thermal storage capacities for three days with wind energy shares of 7%, 25%, and 60%. Using real-time electricity prices and optimising for operational cost, the implicit demand flexibility potential is quantified with different combinations of heat pump power and storage capacity. The results suggest that 33-100% of critical loads can be shifted dynamically to low-cost periods. Optimised system design depends on local climate, heat demand profile, optimisation horizon, and the type of heat pump. Optimisation with genetic algorithm yielded near-global optimal results approximately 40 times faster than with exhaustive enumeration.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.