Issue |
E3S Web Conf.
Volume 111, 2019
CLIMA 2019 Congress
|
|
---|---|---|
Article Number | 06001 | |
Number of page(s) | 7 | |
Section | Sustainable Urbanization and Energy System Integration | |
DOI | https://doi.org/10.1051/e3sconf/201911106001 | |
Published online | 13 August 2019 |
Numerical investigation of the energy flexibility of different heating and cooling systems
Aalborg University, Division of Architectural Engineering, Department of Civil Engineering, Thomas Manns Vej 23, DK-9220 Aalborg Øst, Denmark
The significant expansion of intermittent renewable energy sources can compromise the stability of energy grids due to the mismatch between instantaneous energy use and production. Buildings have a large potential for energy storage and demand-side management, which can offer energy flexibility to a Smart Grid system. Smart control of heating, ventilation and air conditioning systems is a great solution for improving flexible energy use, load shifting and power peak shaving. This numerical study compares the energy flexibility potential of three different heating and cooling systems implemented in a nearly zero-energy office building. The energy flexibility strategy consists in the modulation of heating / cooling indoor temperature set points according to an energy price signal. The energy flexibility assessment was performed based on the energy shifting ability, indoor thermal comfort level and economic benefits. This article establishes a better understanding of the flexibility potential of common and innovative heating / cooling technologies. Lindab Solus system has the highest load shifting ability with a flexibility index of 67.41%, followed by the radiator heating system, scoring a 59.92%, and the underfloor heating system with 56.65%. It is clear that the selection between different heating/ cooling systems can have a great impact on the energy flexibility of the grid system.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.