Issue |
E3S Web Conf.
Volume 113, 2019
SUPEHR19 SUstainable PolyEnergy generation and HaRvesting Volume 1
|
|
---|---|---|
Article Number | 01001 | |
Number of page(s) | 11 | |
Section | Sustainable Power Plants | |
DOI | https://doi.org/10.1051/e3sconf/201911301001 | |
Published online | 21 August 2019 |
Thermal energy storage in combined cycle power plants: comparing finite volume to finite element methods
1
Aristotle University of Thessaloniki, Laboratory of Fluid Mechanics and Turbomachinery, Department of Mechanical Engineering, GR-54124, Thessaloniki, Greece
2
Royal Institute of Technology, KTH, Heat and Power Division, Department of Energy Technology, SE-10044, Stockholm, Sweden
* Corresponding author: vgkoutzam@meng.auth.gr
The research in thermal energy storage (TES) systems has a long track record. However, there are several technical challenges that need to be overcome, to become omnipresent and reach their full potential. These include performance, physical size, weight and dynamic response. In many cases, it is also necessary to be able to achieve the foregoing at greater and greater scale, in terms of power and energy. One of the applications in which these challenges prevail is in the integration of a thermal energy storage with the gas turbine (GT) compressor inlet conditioning system in a combined cycle power plant. The system is intended to provide either GT cooling or heating, based on the operational strategy of the plant. As a contribution to tackle the preceding, this article describes a series of 3-dimensional (3D) numerical simulations, employing different Computational Fluid Dynamics (CFD) methods, to study the transient effects of inlet temperature and flow rate variation on the performance of an encapsulated TES with phase change materials (PCM). A sensitivity analysis is performed where the heat transfer fluid (HTF) temperature varies from -7°C to 20°C depending on the operating mode of the TES (charging or discharging). The flow rate ranges from 50% to 200% of the nominal inflow rate. Results show that all examined cases lead to instant thermal power above 100kWth. Moreover, increasing the flow rate leads to faster solidification and melting. The increment in each process depends on the driving temperature difference between the encapsulated PCM and the HTF inlet temperature. Lastly, the effect of the inlet temperature has a larger effect as compared to the mass flow rate on the efficiency of the heat transfer of the system.
© The Authors, published by EDP Sciences, 2019
This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.