Issue |
E3S Web Conf.
Volume 113, 2019
SUPEHR19 SUstainable PolyEnergy generation and HaRvesting Volume 1
|
|
---|---|---|
Article Number | 03018 | |
Number of page(s) | 5 | |
Section | Energy Micropolygeneration and Harvesting | |
DOI | https://doi.org/10.1051/e3sconf/201911303018 | |
Published online | 21 August 2019 |
SHIP2FAIR – Martini & Rossi: integration of Solar Heat in Industrial Process – Preliminary evaluation
1
RINA Consulting S.p.A., Via Liri 27, 16145 Genova (GE), Italy
2
Bacardi-Martini&Rossi, Piazza Luigi Rossi, 2, 10023 Chieri (TO), Italy
3
LINKS Foundation, Via Pier Carlo Boggio, 61, 10138 Torino (TO), Italy
* Corresponding author: stefano.barberis@rina.org
† This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 792276 http://ship2fair-h2020.eu/
SHIP2FAIR is a H2020 European funded project†, which aim to foster the integration of solar heat in industrial processes from the agro-food sector facilitating the integration of solar heat production in low temperature processes. Based on the assessment of the industrial process for the production of different spirits and the local solar potential in Pessione plant (TO) of Martini & Rossi – one of the four demosite of the project -, the preliminary results that guided the choice of the most suitable solar collectors (Fresnel) and the definition of the thermo-economic parameters for the solar plant are hereby presented. The preliminary assessment takes into account different perspectives from the industrial and economic point of view: the availability of suitable surfaces, the economics of the investment and the best processes to be fed by solar produced steam towards a preliminary techno-economic feasibility study. The starting points for the analysis have been the characterization of the thermal demand in terms of necessary temperature level (°C), overall consumption and time distribution. The following step has been the identification of the suitable collectors to be installed taking into account the thermal parameters presented before, the boundary conditions of the industrial facility (e.g. space available, orientation, etc.), the technical characteristics of the collector itself and the solar irradiation available considering the plant’s location. Moreover, the complex thermal facility in the factory, constituted by multiple (3) gas boilers and a Combined Heat and Power (CHP) plant in two different but linked pressurized steam loops, is taken into account for the definition of the solar collectors configuration and their integration via the proper management of heat generators and storage. The calculations are based on the expected thermal (steam) production guaranteed by the solar collectors and avoided GHG based on the reduction of gas fired boilers consumption.
© The Authors, published by EDP Sciences, 2019
This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.