Issue |
E3S Web Conf.
Volume 116, 2019
International Conference on Advances in Energy Systems and Environmental Engineering (ASEE19)
|
|
---|---|---|
Article Number | 00079 | |
Number of page(s) | 8 | |
DOI | https://doi.org/10.1051/e3sconf/201911600079 | |
Published online | 24 September 2019 |
Design investigation of electromechanical generator for energy harvesting
University of Maribor, Faculty of Energy Technology, Hočevarjev trg 1, 8270, Krško, Slovenia
* Corresponding author: peter.virtic@um.si
In this paper designs of electromechanical generator for low frequency energy harvesting have been investigated. Simulation with finite element method has been conducted in order to determine highest output voltage of simple and robust generator consisting of permanent magnet and windings. In first part round magnets have been used in spherical and cylindrical form, benefiting from their ability to roll through winding with almost no mechanical friction inducing voltage in into windings. In the second part spindles with smaller radius than circumference of magnet were added to axis to increase rotational velocity of magnet in ambition to further increase induced voltage. As a result of added spindles and use of different magnet shapes length of winding turn varied and resistance of winding varied with it. To ensure similar conditions, windings have been recalculated to lowest electrical resistance using same fill factor, resulting in less winding turns decreasing induced voltage. In case of same kinetic energy input, higher rotational velocity combined with lower inertia produced higher induced voltage output.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.