Issue |
E3S Web Conf.
Volume 124, 2019
International Scientific and Technical Conference Smart Energy Systems 2019 (SES-2019)
|
|
---|---|---|
Article Number | 01023 | |
Number of page(s) | 5 | |
Section | Energy Systems and Complexes | |
DOI | https://doi.org/10.1051/e3sconf/201912401023 | |
Published online | 25 October 2019 |
Experimental research of the operation of self-sufficient desalination setup of vapor-air type
1
Ltd. “KUB”, Ivanovo, Russia
2
Ivanovo State Power University, Ivanovo, Russia
* Corresponding author: vafdanil@yandex.ru
The growing global shortage of freshwater resources can be partially offset by the desalination of mineralized ocean and marine waters. The most common methods of desalination today are distillation, based on phase transformations of water, and reverse-osmosis, which consists in passing sea water through semipermeable membranes. The distillation method of desalination is characterized by significant thermal energy needs. In the process of desalination by the reverse-osmotic method, there is a need for the periodic replacement of expensive membranes, the creation of high pressure, which leads to significant energy consumption. In this regard, the actual problem is the study of vapor-air desalination method, based on the law of equilibrium state of vapor-gas-liquid mixtures. The efficiency of devices based on the vapor-air method is a significant increase in productivity due to the additional generation of steam, which reduces the energy costs for heating water in the installation. The purpose of this work is to determine the main factors affecting the performance of the vapor-air type installations. As a result of an experimental study of the operation of aself-sufficient steam-type desalination setup, it was found out that the initial water and air temperatures in the bubbling zone have a key impact on the performance. The high energy efficiency of devices implementing this method, with the quality of the condensate that complies with regulatory requirements, makes the vapor-air desalination method very future-oriented.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.