Issue |
E3S Web Conf.
Volume 126, 2019
International Conference on Modern Trends in Manufacturing Technologies and Equipment (ICMTMTE 2019)
|
|
---|---|---|
Article Number | 00016 | |
Number of page(s) | 8 | |
DOI | https://doi.org/10.1051/e3sconf/201912600016 | |
Published online | 30 October 2019 |
Malticriteria design of a large-scale mechanical systems
Mechanical Engineering Research Institute, Russian Academy of Sciences,
Moscow,
Russia
* Corresponding author: matusoff.l@yandex.rug
The design and optimization of a large-scale systems are the most difficalt problems. A large-scale system consists of a number of subsystems. For example, in a harvest for harvesting one can separate the following subsystems: the frame, driver's cab, platform, engine, transmission, and steering system. Different departments of the design office engaged in creating a machine optimize their ‘own’ subsystems, while ignoring others. A machine assembled from ‘autonomously optimal’ subsystems turns out to be far from perfect. A machine is a single whole. When improving one of its subsystems, we can unwittingly worsen others. This implies that it is not always possible to solve optimization problems directly even for determination of the feasible solution set. The correct determination of the feasible solution set was a major challenge in engineering optimization problems. In order to construct the feasible solution set, a method called the Parameter Space Investigation (PSI) has been created and successfully integrated into various fields of industry, science, and technology. The methods of approximation of the feasible solution and Pareto optimal sets and the regularization of the Pareto optimal set are described in our paper. These methods are applied to solving the multicriteria optimization problems of large- scale systems. For example, they were applied in an agricultural engineering to a harvester for harvesting design.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.