Issue |
E3S Web Conf.
Volume 130, 2019
The 1st International Conference on Automotive, Manufacturing, and Mechanical Engineering (IC-AMME 2018)
|
|
---|---|---|
Article Number | 01031 | |
Number of page(s) | 7 | |
DOI | https://doi.org/10.1051/e3sconf/201913001031 | |
Published online | 15 November 2019 |
Optimization of Boring Process Parameters in Manufacturing of Polyacetal Bushing using High Speed Steel
1
Manufacturing Engineering, University of Surabaya,
Surabaya,
Indonesia
2
School of Management, College of Business, Royal Melbourne Institute of Technology
Melbourne,
Australia
* Corresponding author: jayasuteja@staff.ubaya.ac.id
Polyacetal is commonly used as bushing material because of its low coefficient of friction and self lubricant characteristics. The polyacetal is machined by using boring process to produce bushing in certain surface roughness. The objectives of this research are to optimize three independent parameters (depth of cut, feed rate and principal cutting edge angle) of boring process of polyacetal using high speed steel tool to achieve the highest material removal rate and the required surface roughness. Response Surface Methodology is used to investigate the influence of the parameters and optimize the boring process. The research shows that the influence of the boring process parameters on polyacetal is similar compared to on metal. The result reveals that the optimum result is achieved by applying the value of depth of cut, feed rate, and principal cutting edge angle is 2.9 × 10–3 m, 0.229 mm rev–1, and 99.1° respectively. By applying these values, the maximum material rate removal achieved in this research is 1263.4 mm3 s–1 and the surface roughness achieved is 1.57 × 10–6 m.
Key words: machine / material rate removal / maximization / surface / roughness / tool steel
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.