Issue |
E3S Web Conf.
Volume 140, 2019
International Scientific Conference on Energy, Environmental and Construction Engineering (EECE-2019)
|
|
---|---|---|
Article Number | 05010 | |
Number of page(s) | 5 | |
Section | Engineering Nets and Equipment | |
DOI | https://doi.org/10.1051/e3sconf/201914005010 | |
Published online | 18 December 2019 |
Monitoring leakage currents of suspension insulators of high voltage overhead power lines
1
Karaganda State Technical University
2
Peter The Great St.Petersburg Polytechnic University
* Corresponding author: jbreido@mail.ru
The relevance of studying partial discharge currents (PDC) arising on the surface of suspension insulators of high-voltage overhead power lines (HVPL) is substantiated. Increasing PDC leads to increasing active energy losses and unauthorized shutdowns of high-voltage power lines due to the electric arc overlap of the suspension insulator. A laboratory bench for PDC experimental studying has been developed and manufactured. As a result of experimental studies we have determined static and dynamic characteristics of partial discharge currents; we have developed the algorithm for processing experimentally obtained results using Microsoft Excel spreadsheet editor. Recommendations have been developed for developing the hardware of the PDC sensor that allows increasing sensitivity, expanding the range of the controlled parameter and improving its dynamic characteristics in order to increase the accuracy and to expand the range of operation of the PDC sensor and to reduce the time it takes to establish its output signal. Equipping 220-500 kV power lines with PDC sensors of suspension insulators with telemetry will allow reducing the number of unauthorized emergency shutdowns of high-voltage power lines; realizing continuous current monitoring of the state of suspension insulators and receiving in real time the information of the integral value of PDC
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.