Issue |
E3S Web Conf.
Volume 76, 2019
The 4th International Conference on Science and Technology (ICST 2018)
|
|
---|---|---|
Article Number | 04006 | |
Number of page(s) | 6 | |
Section | Geomorphology & Atmospheric Science | |
DOI | https://doi.org/10.1051/e3sconf/20197604006 | |
Published online | 15 January 2019 |
Design of coal mine drainage system
1
Master of Mining Engineering, UPN Veteran Yogyakarta, JL. SWK 104 Yogyakarta, 55281, Indonesia
2
Mining Engineering Department, UPN Veteran Yogyakarta, JL. SWK 104 Yogyakarta, 55281, Indonesia
* Corresponding author: waterman.sb@upnyk.ac.id
Research from coal fields show that increased production from coal mines resulted in a wider pit. Changes in the water catchment area resulted in changes in the calculation of mine water volume. Excessive mine water volume affects mining activities. Large amounts of water in the pit causes disruption in excavation and loading and hauling activities. Therefore, the design of mine drainage systems is required. The purpose of the study is to analyse statistically the parameters of the mine drainage system, and to design the mine drainage system; including open drain, sump, and settling pond. The research tools used include the calculation of runoff water discharge that requires statistical analysis for rainfall data processing and the determination of catchment area (CA). The open channel dimension and settling pond design is based on the sump volume calculation. The research area has high rainfall clased for the particle to settle is 30.38 minutes. The percsification, solid percent 2.66 % with settling rate 0.0027 m/s; the time requirentage of theoretically suctioned particle is 83 %, and the settling pond maintenance time that has 4 compartments is 15, 16, 19, and 23 days.
© The Authors, published by EDP Sciences, 2019
This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.