Issue |
E3S Web Conf.
Volume 92, 2019
7th International Symposium on Deformation Characteristics of Geomaterials (IS-Glasgow 2019)
|
|
---|---|---|
Article Number | 11015 | |
Number of page(s) | 5 | |
Section | Treated Geomaterials: Chemical, Microbial, Electrokinetic | |
DOI | https://doi.org/10.1051/e3sconf/20199211015 | |
Published online | 25 June 2019 |
Geotechnical characteristics of polystyrene treated sand
Korea University, School of Civil, Environmental, and Architectural Engineering, Seoul, Korea
* Corresponding author: woojin@korea.ac.r
Many polymeric materials are recently used in geotechnical practice for enhancing the engineering properties of soils. Among the various polymers, this study aims at investigating the geotechnical properties of silica sand coated with polystyrene(PS), which is rarely studied in geotechnical engineering. The polystyrene coated sand was prepared by polymerizing styrene monomer on the surface of silanized sand with median diameter of 0.467 mm. Testing specimens were prepared at 3 different initial relative densities (30, 50 and 70%) by air pluviation. Comprehensive experiments, including one-dimensional compression test with bender elements and triaxial test, were performed to observe the change in geotechnical properties due to the coating of PS on sand surface. The results demonstrate that the adsorbed polymer plays different roles according to strain levels. At very small strain, the polymer on the sand surface may increase the interparticle contact area by applying additional adhesion force between soil particles, leading to an increase in Gmax. However, with an increase in strain level, the polymer will act as the lubricant between sand particles; therefore, the coated sand can show increased compression index and decreased friction angle.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.