Issue |
E3S Web Conf.
Volume 92, 2019
7th International Symposium on Deformation Characteristics of Geomaterials (IS-Glasgow 2019)
|
|
---|---|---|
Article Number | 09002 | |
Number of page(s) | 6 | |
Section | Geomaterial Behaviour: Particle Crushing, Destructuration | |
DOI | https://doi.org/10.1051/e3sconf/20199209002 | |
Published online | 25 June 2019 |
Compressive behaviour of very dense structured granular geo-materials
School of Civil and Environmental Engineering, UNSW Sydney, Australia
* Corresponding author: m.khoshini@unsw.edu.au
The isotropic compression behaviour of dense structured geo-materials and the associated degradation at failure is addressed in a non-qualitative manner. To this end, the general behaviour of fully de-structured geo-materials, e.g. sands, as an accepted reference is thoroughly investigated. The parameters affecting the behaviour of de-structured materials such as mineralogy, gradation and fines content, and relative density are discussed. The isotropic compression behaviour of a weathered weak sandstone, representative of a structured granular geo-material, is then investigated along the isotropic compression stress path under a range of pressures from nil to 100 MPa. Both structured and fully de-structured states of the material are tested implementing the proposed quantification method. The effect of structure on the compressibility of the material is found to be tangible. By plotting the specific volume versus natural log of the mean effective stress, the onset of structure collapse and the successive degradation of the structure are captured. By increasing the pressure, compaction bands throughout the sample increasingly develop and the compression curve asymptotically approaches to that of the fully degraded state of the material. At elevated pressures, the rate of compressibility will increase significantly due to particle crushing.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.