Issue |
E3S Web Conf.
Volume 98, 2019
16th International Symposium on Water-Rock Interaction (WRI-16) and 13th International Symposium on Applied Isotope Geochemistry (1st IAGC International Conference)
|
|
---|---|---|
Article Number | 04009 | |
Number of page(s) | 4 | |
Section | Thermodynamics and Kinetics of Water-Rock Interaction, Experimental Geochemistry | |
DOI | https://doi.org/10.1051/e3sconf/20199804009 | |
Published online | 07 June 2019 |
Mechanisms of arsenite oxidation and arsenate adsorption by a poorly crystalline manganese oxide in the presence of low molecular weight organic acids
1
State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, P.R. China
2
School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, P.R. China
* Corresponding author: hmguo@cugb.edu.cn.
Manganese oxides are considered as one of the effective oxides capable of oxidizing arsenite and reduce the toxicity of arsenic. Since low molecular weight organic acids (LMWOAs) commonly found in nature can act as reducing and chelating agents for manganese oxides, it is particularly important to investigate how these organic acids with different numbers of carboxyl groups like citrate and EDTA affect oxidation and adsorption of arsenic by manganese oxides. In this study, low As(V) adsorption on manganese oxide is slightly enhanced by citrate and EDTA, which results from the increase in active sites via reduction of manganese oxide by LMWOAs. However, citrate and EDTA have different effects on the oxidation of As(III). MnIII/II citrate autocatalytic cycle as a manganese-based redox system decreases As(III) oxidation rate, but EDTA does not yield autocatalysis, which slightly increases the oxidation rate of As(III). Reduction of manganese oxide by EDTA and chelation between Mn(II) and EDTA lead to exposure of more active sites. Our research highlights the different effects of low molecular weight organic acids on the reactions between arsenic and manganese oxide.
© The Authors, published by EDP Sciences, 2019
This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.