Issue |
E3S Web Conf.
Volume 98, 2019
16th International Symposium on Water-Rock Interaction (WRI-16) and 13th International Symposium on Applied Isotope Geochemistry (1st IAGC International Conference)
|
|
---|---|---|
Article Number | 07009 | |
Number of page(s) | 5 | |
Section | Geochemistry of Natural Waters: From Atmospheric Precipitations to Deep Brines | |
DOI | https://doi.org/10.1051/e3sconf/20199807009 | |
Published online | 07 June 2019 |
Differences in hydrogeochemistry between shallow and deep aquifers in the Baiyangdian basin, China
1
State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, P.R. China
2
School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, P.R. China
3
China Institute of Geological Environment Monitoring, Beijing 100081, P. R. China
* Corresponding author: hmguo@cugb.edu.cn
Groundwater is the dominant long-term water resource for agricultural irrigation and industrial production in the Baiyangdian basin, North China Plain. Groundwater and pore-water were investigated to evaluate chemical evolution and geochemical processes in shallow and deep aquifers. Results show that both shallow groundwater and shallow pore-water had higher TDS, Ca2+, Mg2+, SO42-, and HCO3- concentrations than deep groundwater and deep pore-water. Generally, concentrations of groundwater major ions were higher than those of pore-water in shallow aquifers, while they were slightly lower in groundwater than in pore-water from deep aquifers. Water isotopes showed the meteoric origin of groundwater and pore-water, although evaporation signature was traced in shallow groundwater. Shallow groundwater also experienced carbonate dissolution and silicate weathering. Silicate weathering and evaporite dissolution were the major hydrogeochemical processes in deep aquifers. This study indicated that deep groundwater has better water quality, but is vulnerable to contamination from shallow groundwater with high TDS and NO3- concentrations.
© The Authors, published by EDP Sciences, 2019
This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.