Issue |
E3S Web Conf.
Volume 143, 2020
2nd International Symposium on Architecture Research Frontiers and Ecological Environment (ARFEE 2019)
|
|
---|---|---|
Article Number | 01044 | |
Number of page(s) | 6 | |
Section | Architectural Engineering and Urban Construction | |
DOI | https://doi.org/10.1051/e3sconf/202014301044 | |
Published online | 24 January 2020 |
Study on the Thermal Environment Inside a Fully-Enclosed Subway Noise Barrier
1 Beijing Urban Construction Design & Development Group Co., Limited, 100037 Beijing, China
2 Beijing Municipal Institute of Labour Protection, 100054 Beijing, China
* Corresponding author: kangzhongxu@163.com
The thermal environment inside a fully-enclosed subway noise barrier shall be designed according to underground section tunnel standards. This article constructs a model using practical examples, simulates calculations on fully-enclosed noise barrier installations both with and without air vents via a threedimensional numerical simulation method, and then conducts a comparative analysis of the effects noise barrier lengths and air vent widths have on an internal thermal environment. The calculation results show that when the length of the fully-enclosed noise barrier without air vents was 100m, the internal thermal environment exceeded the limit; as the width of the air vents increased, the temperature in the internal environment gradually decreased, but the reduction was less once the air vent width exceeded 2 m; When the top air vent width was 2 m, and the noise barrier length was 100m, the thermal environment was found to meet requirements. As the noise barrier length increased, the internal air temperature exceeded the standards by varying degrees.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.