Issue |
E3S Web Conf.
Volume 166, 2020
The International Conference on Sustainable Futures: Environmental, Technological, Social and Economic Matters (ICSF 2020)
|
|
---|---|---|
Article Number | 06003 | |
Number of page(s) | 7 | |
Section | Sustainable Materials and Technologies | |
DOI | https://doi.org/10.1051/e3sconf/202016606003 | |
Published online | 22 April 2020 |
Comparative analysis of strength and deformation of reinforced concrete and steel fiber concrete slabs
Odesa State Academy of Civil Engineering and Architecture, Odesa, 65029, Ukraine
* Corresponding author: sng@ogasa.org.ua
The results of experimental studies of the steel fiber influence on the bearing capacity, deformability and crack resistance of reinforced concrete multi-hollow plates are given. We investigated a serial floor slab and a similar one, but with the addition of steel fiber. Both plates are factory-made. For testing, the testing apparatus was designed and manufactured that made it possible to study full-size floor slabs in laboratory conditions. The tests were carried out according to a single-span scheme with the replacing equivalent load. The loading was carried out by applying two concentrated strip vertical loads along the plate width. The load was applied in steps of (0.04 ÷ 0.05) from the breaking load. Each stage ended with exposure lasting up to 10 minutes with fixing all the necessary parameters. Deformations were measured using dial gauges. From the moment the first crack appeared in the stretched zone of concrete, the process of crack formation and opening was monitored. At each level, using the Brunell tube, the width of their opening and height were measured. The moment of cracking in both slabs began at the same relative strain. It has been established that the bearing capacity and crack resistance of a slab of combined reinforcement using steel fiber are respectively 50 and 44% higher than that of a similar reinforced concrete slab. The maximum deflection of the slab of combined reinforcement is 37.5% lower than that of conventional reinforced concrete. The destruction of both slabs occurred under loads, when the relative deformations in the compressed zone of concrete reached 0.80×10-3 and 1.10×10-3 for reinforced concrete and steel-fiber concrete slabs, respectively, the difference is 37.5%.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.