Issue |
E3S Web Conf.
Volume 167, 2020
2020 11th International Conference on Environmental Science and Development (ICESD 2020)
|
|
---|---|---|
Article Number | 01001 | |
Number of page(s) | 7 | |
Section | Wastewater Treatment | |
DOI | https://doi.org/10.1051/e3sconf/202016701001 | |
Published online | 24 April 2020 |
Removal of organic and nitrogen in a novel anoxic fixed-bed / aerobic fluidized-moving bed integrated with a constructed wetland bio-reactor (A/O-FMCW)
1
College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
2
School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
* Corresponding author: yangpinga301@163.com
An innovative hybrid process was designed using an integrated bio-reactor based on an anoxic / aerobic process that combined a fixed bed and a fluidized-moving bed with a constructed wetland (A/OFMCW) to enhance the removal of organic material and nitrogen. The goal was to achieve stringent discharge standards for rural domestic wastewater treatment. A preliminary lab-scale investigation of about 130 days obtained an average COD (Chemical Oxygen Demand) removal rate as high as 92.2% at an average influent concentration of 319.5 mg/L. The average TN (Total Nitrogen) removal efficiency positively correlated with the attached-growth biofilm as observed by SEM (Scanning Electron Microscope), and declined from 79.1% to 53.2%. The was accompanied by a gradual increase in the average influent concentration from 16.73 to 52.01 mg/L despite the relative nitrification rate fluctuating between 92.5% and 97.9%. The entire integrated system improved the COD removal efficiency by nearly 36% and the TN by 14–28%. Classical autotrophic nitrification and heterotrophic denitrification were the main mechanisms responsible for the elimination of pollutants, and the latter was determined to be the limiting step. Overall, this study provides an effective and less expensive alternative method to apply or upgrade DWWT (Decentralized Wastewater Treatment).
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.